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Abstract—In this paper we present a numerical method for solving the Dirichlet problem for
a two-dimensional wave equation. We analyze the ill-posedness of the problem and construct
a regularization algorithm. Using the Fourier series expansion with respect to one variable, we
reduce the problem to a sequence of Dirichlet problems for one-dimensional wave equations. The
first stage of regularization consists in selecting a finite number of problems from this sequence.
Each of the selected Dirichlet problems is formulated as an inverse problem Aq = f with respect
to a direct (well-posed) problem. We derive formulas for singular values of the operator A in the
case of constant coefficients and analyze their behavior to judge the degree of ill-posedness of the
corresponding problem. The problem Aq = f on a uniform grid is reduced to a system of linear
algebraic equations Allq = F . Using the singular value decomposition, we find singular values of
the matrix All and develop a numerical algorithm for constructing the r-solution of the original
problem. This algorithm was tested on a discrete problem with relatively small number of grid nodes.
To improve the calculated r-solution, we applied optimization but observed no noticeable changes.
The results of computational experiments are illustrated.
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INTRODUCTION

The first results concerning the boundary value problems for hyperbolic equations with data on the
whole boundary were obtained by J. Hadamard [1], A. Huber [2], D. Mangeron [3].

D. G. Bourgin and R. Daffin [4, 5] studied the Dirichlet problem in the rectangle

R := {0 ≤ t ≤ T, 0 ≤ x ≤ S}

for the damped wave equation
(
D2

t −D2
x − k2

)
u = 0. From here on Dtu =

∂u

∂t
, Dxu =

∂u

∂x
, D2

t u =
∂2u

∂t2
,

etc. If T/S is irrational then the problem was shown to admit at most one solution in the class of
continuously differentiable functions that have the Lebesgue integrable second derivatives in R. The
authors also proved the solvability of the Dirichlet problem under certain restrictions on the parameters
T , S, and k.

S. G. Ovsepyan [6] considered the problem

(1 + λ)D2
xu − (1 − λ)D2

yu = 0, u|Γ = σ(s), (1)

in a bounded multiply connected domain D with boundary Γ (here λ is a real parameter, |λ| < 1). It was
demonstrated that, under some conditions on the boundary Γ, the solution to problem (1) is unique in
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the first Baire class. The solution of problem (1) was also shown as unstable with respect to a change of
domain not only for simply connected domains, but also for any bounded multiply connected domain D
with piecewise smooth boundary Γ.

Yu. M. Berezanskii [7] considered the Dirichlet problem for the equation
(
D2

t − D2
x

)
u = 0, (2)

and suggested seeking its solutions not in the class of smooth functions but in L2. This suggestion made
it possible to construct the domains in which the generalized solution of the Dirichlet problem is stable
under small perturbations of boundary. Some examples of such domains were described in [7].

The studies by V. M. Borok [8–11] concern the boundary value problems in the layer {(t, x) : 0 ≤
t ≤ T, x ∈ R

n} for evolution equations and systems with constant coefficients. Classes of uniqueness
and stable solvability of the problems are specified in the papers. In particular, in [8], it is shown
that equation (2) with the boundary conditions u(x, 0) = u(x, T ) = 0, −∞ < x < ∞, has nontrivial
solutions in the class of bounded functions.

The necessity of considering the boundary value problems for hyperbolic equations has also emerged
from the theory of time-dependent problems for linear systems of differential equations unsolvable with
respect to the higher time derivatives. This theory was initiated by S. L. Sobolev [12, 13] (see also papers
by R. A. Aleksandryan [14] and R. Denchev [15]).

The results by T. I. Zelenyak and M. V. Fokin [16–18] concerning the solvability and spectral
properties of the Dirichlet problem for the wave equation were stimulated by studying the asymptotic
behavior of solutions to the problem

d2u

dt2
+ Au = 0, u(0) = u0, u′(0) = u1,

where A is a positive self-adjoint bounded operator in the Hilbert space W 1
2 (D).

S. A. Aldashev [19] proved that the Dirichlet problem for the multidimensional wave equation is
uniquely solvable in cylinder.

A fairly complete list of references can be found in the monographs by B. I. Ptashnik [20] and
V. P. Burskii [21].

In Section 1 of this article, we formulate direct and inverse problems for a wave equation. In Section 2,
we state the conditions under which the Dirichlet problem for the wave equation is well-posed, and
calculate singular values of the operator of the inverse problem with constant coefficients. In the next
section, we discretize the inverse problem with variable coefficients, reduce it to a system of linear
algebraic equations (SLAE), and calculate singular values of this system. Section 4 presents the results
of numerical calculations.

1. STATEMENT OF THE PROBLEM

Consider the problem of evaluating the water-surface fluctuations that are caused by a sudden
displacement of the seafloor occurred at time t = 0 and described by the finite function f (1)(x, y) =
u(x, y, 0). We assume that the shape of the water surface is fixed at time t = T and has the form
f (2)(x, y) = u(x, y, T ). We suppose also that by time T the wave has not yet reached the shore;
consequently, along the edge of the sea we can put the homogeneous boundary conditions. Using
shallow water approximation [23], denote c(x, y) =

√
gH(x, y), where g = 9.81 m·s−2 is acceleration

of gravity, H(x, y) > 0 is a function describing the bottom topography (bathymetry). Thus, we come to
the following Dirichlet problem for the wave equation:

D2
t u = g[Dx(H(x, y)Dxu) + Dy(H(x, y)Dyu)], (x, y) ∈ Ω, t ∈ (0, T );

u|t=0 = f (1)(x, y), u |t=T = f (2)(x, y), (x, y) ∈ Ω; u|∂Ω = 0, t ∈ (0, T ),
(3)

where Ω = (0, L) × (0, L).
To provide the homogeneity of conditions along ∂Ω, we suppose that the support of the function

f (1)(x, y) is sufficiently small:

sup(f (1)) ∈ Ω(a) = (L/2 − a,L/2 + a) × (L/2 − a,L/2 + a), a ∈ (0, L/2),
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and so is the parameter T ∈ (0, Tmax), where Tmax = (L/2 − a)/‖c‖C(0,L).
Problem (3) is ill-posed (its instability is shown in [22]). We reformulate this problem as inverse to

a direct (well-posed) problem. Indeed, consider the following initial boundary value problem for the wave
equation:

D2
t u = g

[
Dx(H(x, y)Dxu) + Dy(H(x, y)Dyu)

]
, (x, y) ∈ Ω, t ∈ (0, T );

u|t=0 = f (1)(x, y), Dtu |t=0= q(x, y), (x, y) ∈ Ω; u|∂Ω = 0, t ∈ (0, T ).
(4)

In the direct problem (4), it is required to find the function u(x, y, t) from the given f (1)(x, y), q(x, y),
and H(x, y) (a method of solving this problem was proposed in [24]).

Assume q(x, y) unknown. Let an additional information be gained about the solution of (4):

u(x, y, T ) = f (2)(x, y). (5)

Then the inverse problem is formulated as follows:
Given f (1)(x, y), f (2)(x, y), and H(x, y), determine q(x, y) using (4) and (5).

2. STUDYING THE PROBLEM IN THE CASE OF CONSTANT COEFFICIENTS

2.1. The Uniqueness Theorem

Consider the inverse problem (4), (5) in the case when H(x, y) = H and suppose that c =
√

gH = 1.
Extend all functions involved in (4), (5) as odd functions in the variable y over the interval (−L,L).
Expanding them in the Fourier series like

u(x, y, t) =
∑

k∈N

uk(x, t) sin(πky/L),

we arrive at the following sequence of inverse problems for one-dimensional wave equations:

D2
t uk =

(
D2

x − k2(π/L)2
)
uk, x ∈ (0, L), t ∈ (0, T ), (6)

uk(x, 0) = f
(1)
k (x), x ∈ (0, L), (7)

Dtuk(x, 0) = qk(x), x ∈ (0, L), (8)

uk(0, t) = uk(L, t) = 0, t ∈ (0, T ), (9)

uk(x, T ) = f
(2)
k (x), x ∈ (0, L). (10)

Here k ∈ N = {1, 2, 3, . . .}.

Similarly, we extend uk(x, t), f
(1)
k (x), f

(2)
k (x), and qk(x) into odd functions in x over the interval

(−L,L), then expand them in Fourier series

uk(x, t) =
∑

n∈N

uk,n(t) sin(nπx/L),

and so on. In result, we obtain the inverse problems

u′′
k,n + (π/L)2(n2 + k2)uk,n = 0, uk,n(0) = f

(1)
k,n, u′

k,n(0) = qk,n, (11)

uk,n(T ) = f
(2)
k,n. (12)

The solution of the direct problem (11) has the form

uk,n(t) = f
(1)
k,n cos pk,nt +

qk,n

pk,n
sin pk,nt, pk,n =

π

L

√
k2 + n2. (13)

Substituting t = T in (13), we obtain

uk,n(T ) = f
(2)
k,n = f

(1)
k,n cos pk,nT +

qk,n

pk,n
sin pk,nT. (14)
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Theorem (uniqueness of the solution to the inverse problem). Assume that, for all k, n ∈ N

and m ∈ Z, the parameter T ∈ (0, Tmax) meets the condition T �= πm/pk,n (for example, T = r1/r2

is a rational number from the interval (0, Tmax)). Then if the inverse problem (6)–(10) has a
solution in C1[0, L] then the solution is unique and its Fourier coefficients are expressed by the
formula

qk,n =
f

(2)
k,n − f

(1)
k,n cos pk,nT

sin pk,nT
pk,n.

2.2. Singular Values of the Operator of the Inverse Problem

Reformulate the inverse problem (6)–(10) in the operator form A(k)qk = f
(2)
k , where

A(k) : L2(0, L) → L2(0, L).

Define A(k) as follows: Take an arbitrary qk ∈ L2(0, L). Substitute qk(x) into (8) and consider the direct

problem (6)–(9). As known [25], if f (1)
k ∈ ◦→ H1(0, L) and qk ∈ L2(0, L) then the problem (6)–(9) admits

a unique solution uk ∈ H1((0, L) × (0, T )). By the trace theorem [24], there exists uk(x, T ) ∈ L2(0, L).
Put A(k)qk := uk(x, T ). Note that the operator A(k) : L2(0, L) → L2(0, L) so-constructed is well
defined.

Theorem 2. The singular values of A(k) have the form σn(A(k)) = | sin pk,nT |/pk,n, n ∈ N.

Proof. Taking into account (14), we can write

(A(k)qk)(x) =
∑

n∈N

sin pk,nT

pk,n
qk,n sin

πnx

L
. (15)

It is known that σ2
n(A(k)) = λn(A∗(k)A(k)), where λn(A∗(k)A(k)) are the eigenvalues of the

operator A∗(k)A(k). Let us determine the adjoint operator A∗(k) : L2(0, L) → L2(0, L). By definition,

〈A(k)qk, ψ〉L2(0,L) = 〈qk, A
∗(k)ψ〉L2(0,L), ψ(x) ∈ L2(0, L). (16)

Equality (16) can be rewritten as
L∫

0

(A(k)qk)(x)ψ(x) dx =

L∫

0

qk(x)(A∗(k)ψ)(x) dx. (17)

Expand the odd extension of ψ into the Fourier series on (−L,L):

ψ(x) =
∑

n∈N

ψn sin(πnx/L). (18)

Rearrange (17) in view of (15) and (18):

L∫

0

(
∑

n∈N

sin pk,nT

pk,n
qk,n sin

πnx

L

)(
∑

m∈N

ψm sin
πmx

L

)

dx =
∑

n∈N

sin pk,nT

pk,n
qk,nψn

×
L∫

0

sin2 πnx

L
dx =

L∫

0

(
∑

m∈N

qk,m sin
πmx

L

)(
∑

n∈N

sin pk,nT

pk,n
ψn sin

πnx

L

)

dx.

Thus, we obtain

(A∗(k)ψ)(x) =
∑

n∈N

sin pk,nT

pk,n
ψn sin

πnx

L
. (19)
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Fig. 1. Singular values σn(A(k)) for k = 1, 5, 10, 20, T = 3, and c = 1:
(a) n = 0, . . . , 40; (b) n = 100, . . . , 180

Note that from (15) and (19) it follows that A(k) is self-adjoint.

Using (15) and (19), we obtain the Fourier series expansion of A�(k)A(k):

A∗(k)(A(k)qk)(x) =
∑

n∈N

sin pk,nT

pk,n
(A(k)qk)n sin

πnx

L
=

∑

n∈N

(
sin pk,nT

pk,n

)2

qk,n sin
πnx

L
.

Therefore, the eigenvalues of A∗(k)A(k) have the form

λn(A∗(k)A(k)) =
(

sin pk,nT

pk,n

)2

.

Then the singular values of A(k) can be written as σn(A(k)) = | sin pk,nT |/pk,n.

The proof of Theorem 2 is complete.

As seen in Fig. 1, the singular values of A(k) decrease with the growth of n.

3. DISCRETIZATION OF THE INVERSE PROBLEM IN THE CASE OF c = c(x)

In numerical calculations we consider the one-dimensional inverse problems

D2
t uk = c2(x)

(
D2

x − k2(π/L)2
)
uk, x ∈ (0, L), t ∈ (0, T ),

uk(x, 0) = f
(1)
k (x), Dtuk(x, 0) = qk(x), x ∈ (0, L), (20)

uk(0, t) = uk(L, t) = 0, t ∈ (0, T ),

uk(x, T ) = f
(2)
k (x), (21)

which are obtained using the Fourier series expansions of the functions involved in the following inverse
problem:

D2
t u = c2(x)

(
D2

x + D2
y

)
u, (x, y) ∈ Ω, t ∈ (0, T ),

u|t=0 = f (1)(x, y), Dtu|t=0 = q(x, y), (x, y) ∈ Ω, u|∂Ω = 0, t ∈ (0, T );
(22)

u|t=T = f (2)(x, y). (23)

Note that the inverse problem (4), (5) can be investigated similarly, but it requires much more cumber-
some calculations.

Let Nx be the number of nodes of a uniform grid with respect to the variable x on the interval
(0, L). The odd number Nt of nodes of a uniform grid with respect to the variable t is chosen so that
Nt ≥ Nx. The step in the space variable x is equal to hx = L/Nx and the time-step is ht = T/Nt. Denote
ri = ci(ht/hx) and aki

= (π/L)2(cikht)2/2 for i = 0, 1, . . . , Nx.
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Using an explicit difference scheme of the second order of accuracy, we obtain the discrete problem

uj+1
ki

= r2
i

(
uj

ki+1
− 2uj

ki
+ uj

ki−1

)
− aki

(
uj

ki+1
+ uj

ki−1

)
+ 2uj

ki
− uj−1

ki
,

u0
ki

= f
(1)
ki

, u1
ki

= γ
(
f

(1)
ki

)
+ htqki

, i = 0, 1, . . . , Nx,

uj
k0

= uj
kNx

= 0, j = 0, 1, . . . , Nt;

(24)

uNt
ki

= f
(2)
ki

. (25)

Here γ(f (1)
ki

) = f
(1)
ki

+ r2
i

(
f

(1)
ki+1

− 2f (1)
ki

+ f
(1)
ki−1

)
/2 − aki

(
f

(1)
ki+1

+ f
(1)
ki−1

)
/2.

The purpose of the next subsection is to present the inverse problem (24), (25) in the matrix form
All(k)qk = Fk, where Fk is a data vector of the problem and l = Nx + 1.

3.1. Reducing the Inverse Problem to a System of Linear Algebraic Equations

Let v1 =
(
u2

k0
, u2

k1
, . . . , u2

kNx

)�, and v2 =
(
u3

k0
, u3

k1
, . . . , u3

kNx

)�.

Set U0 =
(
u0

k0
, u0

k1
, . . . , u0

kNx
, u1

k0
, u1

k1
, . . . , u1

kNx

)� and U1 = (v1, v2)T , Q = (qk0 , qk1, . . . , qkNx
)�.

The vectors U0 and U1 have the same dimension equal to 2Nx + 2. Put bki
= r2

i − aki
for i =

0, 1, . . . , Nx, and note that the vectors v1 and v2 can be written as v1 = B1U
0 and v2 = B2v1 + B3U

0,
where

B1 =

⎛

⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎝

0 0 . . . 0 0 0 0 0 . . . 0

0 −1 . . . 0 0 bk1 2 − 2r2
1 bk1 . . . 0

...
...

. . .
...

...
...

. . . . . . . . .
...

0 0 . . . −1 0 0 . . . bkNx−1
2 − 2r2

kNx−1
bkNx−1

0 0 . . . 0 0 0 . . . 0 0 0

⎞

⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎠

,

B2 =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎝

0 0 0 . . . 0 0

bk1 2 − 2r2
1 bk1 . . . 0 0

0 bk2 2 − 2r2
2 . . . 0 0

...
...

. . . . . . . . .
...

0 0 . . . bkNx−1
2 − 2r2

kNx−1
bkNx−1

0 0 . . . 0 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎠

,

B3 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 −1 0 . . . 0 0

0 0 . . . 0 0 0 −1 . . . 0 0
...

...
...

...
...

...
...

. . .
...

...

0 0 . . . 0 0 0 0 . . . −1 0

0 0 . . . 0 0 0 0 . . . 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

Denote by C the square matrix

C =

⎛

⎝ B1

B2B1 + B3

⎞

⎠
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and put

M =
(
C

(Nt−1)/2
[Nx+2] , C

(Nt−1)/2
[Nx+3] , . . . , C

(Nt−1)/2
[2Nx+2]

)�
,

where C
(Nt−1)/2
[i] is the ith row of the matrix C(Nt−1)/2.

Theorem 3. The inverse problem (24), (25) is reducible to a system of linear algebraic equations
All(k)qk = Fk, l = Nx + 1, with the matrix All(k) of the form All(k) = MP , where

P =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0

0 ht . . . 0 0
...

...
. . .

...
...

0 0 . . . ht 0

0 0 . . . 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

The dimension of P is equal to (2Nx + 1) × (Nx + 1). The data vector is specified by the formula

Fk = F
(2)
k − MKF

(1)
k , where F

(p)
k =

(
f

(p)
k0

, f
(p)
k1

, . . . , f
(p)
kNx

)�, p = 1, 2, and

K =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
. . .

...
...

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1

0 0 0 . . . 0 0

bk1/2 1 − r2
1 bk1/2 . . . 0 0

0 bk2/2 1 − r2
2 . . . 0 0

...
...

. . . . . . . . .
...

0 0 . . . bkNx−1
/2 1 − r2

Nx−1 bkNx−1
/2

0 0 . . . 0 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

3.2. Singular Values of the Matrix All(k)

Here we study the behavior of singular values of All(k).

In the case of constant coefficient, the singular values of All(k) (Fig. 2) decrease in much the same
way as those of the operator A(k) (see Fig. 1).

Suppose now that the bottom topography is described by the function

H(x) =

[

g

(
9β

10π2
x2 − β

)2
]−1

, β = 5.
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Fig. 2. Singular values σn(All(k)) for k = 1, 5, 10, 20, T = 3, and c = 1:
(a) n = 0, . . . , 40; (b) n = 100, . . . , 180

Fig. 3. Singular values σn(All(k)) for k = 1, 5, 10, 20, T = 3, and c = c(x):
(a) n = 0, . . . , 40; (b) n = 100, . . . , 180

Then c(x) =
(

9β
10π2

x2 − β

)−1

. We calculate the singular values of All(k) in this case and display their

behavior in Fig. 3.

3.3. An Algorithm for Constructing a Normal Pseudosolution and an r-Solution

Consider a system of linear algebraic equations Aq = f , where A ∈ R
m ×R

n is a rectangular matrix,
while q ∈ R

n and f ∈ R
m are vectors. Suppose, for example, that m < n. By the theorem on singular

value decomposition, there exist orthogonal matrices U ∈ R
m × R

m and V ∈ R
n × R

n together with
a nonincreasing sequence of non-negative numbers σj , j = 1, . . . ,m, such that A = UΣV �, where Σ
is a rectangular matrix of the form

Σ =

⎛

⎜⎜
⎜⎜
⎜
⎜
⎝

σ1 0 0 0 0 . . . 0

0 σ2 0 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 0 σm 0 . . . 0

⎞

⎟⎟
⎟⎟
⎟
⎟
⎠

.

Rewrite the system Aq = f in the form UΣV �q = f .

Put z = V �q. Then q = V z. Taking into account that U� = U−1, we observe that Σz = U�f = g ∈
R

m. Hence, zj = gj/σj if σj �= 0. In the case when σj = 0 or j > m, we specify zj = 0. Thereby we have
constructed a normal pseudosolution qnp = V z of the problem Aq = f [26].

Note that if the matrix A has relatively small singular values then large errors may appear in
calculating the corresponding zj = gj/σj . To avoid the error accumulation, it is necessary to provide
an operation of zeroing out small singular values. It is most natural to equate σj to zero starting with
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some number. Let Σr denote the matrix obtained from Σ by putting σj = 0 for j = r + 1, . . . ,m. The
change from the original system Aq = UΣV �q = f to the system UΣrV

�qr = f can be treated as
a regularization with the parameter r. The solution qr of the latter system is called the r-solution of
the problem Aq = f . As usual, how to choose the parameter r is an important question. Indeed, if r is
too small, the regularized system differs considerably from the original one; but if r is large then the
calculated solution may have a very large error.

In the following theorem we show that the optimal value of r is chosen depending on the error ε in the
data of the problem:

Theorem 4. Let A : Q → F be a compact linear operator, and let Q and F be separable Hilbert
spaces. If qε

r is an r-solution of the problem Aq = f ε with |f − f ε| ≤ ε then

∥
∥qnp − qε

r

∥
∥2 ≤ b2

3r3
+ ε2

r∑

j=1

1
σ2

j

and the optimal r satisfies the equation

−b2/r4 + ε2
(
1/

(
σ2

r

)
− 1/

(
σ2

1

))
= 0,

where b = ‖qnp‖.

Proof. As known [26], the normal pseudosolution qnp of the problem Aq = f admits the following series
expansion:

qnp =
∞∑

j=1

qjvj =
∞∑

j=1

〈f, uj〉
σj

vj . (26)

Here qj are the Fourier coefficients of the function qnp, {σj} is a nonincreasing sequence of singular
values of the operator A, while {vj} and {uj} are the corresponding right- and left-singular vectors,
respectively (these are the orthonormal sequences of functions).

Let qr be an r-solution of the problem Aq = f ; that is, its first r components coincide with those of
qnp and all next are zeroes. Then

∥∥qnp − qε
r

∥∥2 ≤ ‖qnp − qr‖2 +
∥∥qr − qε

r

∥∥2
. (27)

Without loss of generality, we assume that

qnp(x) =
∑

j

qje
ijx, qnp(x) ∈ C2[0, L].

Then there holds |qj| ≤ b/|j|2, where b = ‖qnp‖C2[0,L].

Thus, the first term in (27) is estimated as follows:

‖qnp − qr‖2 ≤
∞∑

j=r

q2
j ≤

∞∑

j=r

b2

j4
.

Using the Cauchy integral test, we obtain

∞∑

j=r

b2

j4
≤ b2

∞∫

r

1
x4

dx =
b2

3r3
.

For the second term in (27) we obtain

‖qr − qε
r‖2 =

r∑

j=1

〈f − f ε, uj〉2

σ2
j

≤
r∑

j=1

ε2

σ2
j

.
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Fig. 4. Exact solution qe(x, y)

Therefore,

∥
∥qnp − qε

r

∥
∥2 ≤ b2

3r3
+ ε2

r∑

j=1

1
σ2

j

. (28)

Evidently, the optimal number r is to minimize the right-hand side of inequality (28); that is,

r = min
l∈N

⎛

⎝ b2

3l3
+ ε2

l∫

1

dx

σ2(x)

⎞

⎠ .

Hence, r is a solution of the equation

−b2/r4 + ε2
(
1/

(
σ2

r

)
− 1/

(
σ2

1

))
= 0,

which proves the theorem.

4. NUMERICAL EXPERIMENTS

Let the inverse problem (22), (23) have an exact solution of the form

qe(x, y) =
N∑

k=1

qek(x) sin ky, x ∈
(

7π
16

,
9π
16

)
, y ∈

(
3π
10

,
7π
10

)
, (29)

where

qek =
2
π

π∫

0

cos 16x + 1
20

sin 5y + 1
5

sin ky dy.

The exact solution (29) is plotted in Fig. 4.
As the known function f (1)(x, y) of problem (22) we took

f (1)(x, y) =
cos 16x + 1

20
sin 5y + 1

20
, x ∈

(
7π
16

,
9π
16

)
, y ∈

(
3π
10

,
7π
10

)
.

In numerical experiments, we considered the inverse problems (20), (21) for L = π and T = 3
on the uniform grid with Nx = 250, Ny = 200, and Nt = 591 and solved the corresponding discrete
problems (24), (25) for every k = 1, 2, . . . , 50 using the singular value decomposition.

Fig. 5 illustrates the recovered rate of the seafloor displacement qε
r(x, y) and its deviation from the

exact solution qe(x, y).
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Fig. 5. The r-solution qε
r(x, y) for ε = 30% and r = 198 (a); the difference between the

exact solution qe(x, y) and the r-solution qε
r(x, y) (b)

Fig. 6. The reconstructed solution q500(x, y) obtained with the Landweber algorithm after
500 iterations (a); the difference between q500(x, y) and the exact solution qe(x, y) (b)

4.1. The r-Solution as an Initial Approximation in the Landweber Iteration

In [22], we used the gradient methods to solve the inverse problem (22), (23). Here we present the
numerical results of successive application of the singular value decomposition and the Landweber
iteration method to the perturbed problem (22), (23) with L = π, T = 3, and the data error ε = 30%.
Indeed, we took, as an initial approximation q0, the r-solution qε

r(x, y) (see Fig. 5 ) and computed the
subsequent approximations qi(x, y) using the Landweber iteration. The approximate solution q500(x, y)
generated after 500 iterations is displayed in Fig. 6, as is the difference between q500(x, y) and the exact
solution qe(x, y).

Note that the r-solution has not improved upon applying the optimization (compare Figures 5, b
and 6, b).

ACKNOWLEDGMENTS

The authors were supported by the Russian Foundation for Basic Research (project no. 11–01–
00105), the Federal Target Program “Scientific and Scientific-Pedagogical Staff of Innovative Russia”
for 2009–2013 (State Contract no. 14.740.11.0350).

REFERENCES
1. J. Hadamard, “Equations aux derivees partielles, le cas hyperbolique,” Enseign. Math. 35 (1), 25–29 (1936).
2. A. Huber, “Die erste Randwertaufgabe für geschlossene Bereiche bei der Gleichung uxy = f(x, y),”

Monatsh. Math. Phys. 39, 79–100 (1932).
3. D. Mangeron, “Sopra un problema al contorno per un’equazione differenziable alle derivate parziali di quarto

ordine con le caratteristiche realidoppie,” Rend. Accad. Sci. Fis. Mat. Napoli 2, 29–40 (1932).
4. D. G. Bourgin, “The Dirichlet Problem for the Damped Wave Equation,” Duke Math. J. 7, 97–120 (1940).
5. D. G. Bourgin and R. Duffin, “The Dirichlet Problem for the Vibrating String Equation,” Bull. Amer. Math.

Soc. 45, 851–858 (1939).
6. S. G. Ovsepyan, “On a Generating Set of Boundary Points in the Dirichlet Problem for the Equation of String

Vibration in Multiply Connected Domains,” Akad. Nauk Armyan. SSR Dokl. 39 (4), 193–200 (1964).
7. Yu. M. Berezanskii, The Eigenfunction Expansion of Self-Adjoint Operators (Nauk. Dumka, Kiev, 1965)

[in Russian].

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 7 No. 2 2013



www.manaraa.com

198 KABANIKHIN, KRIVOROT’KO

8. V. M. Borok, “Uniqueness Classes of Solutions of the Boundary Value Problem in an Infinite Layer,” Dokl.
Akad. Nauk SSSR 183 (5), 995–998 (1968).

9. V. M. Borok, “Uniqueness Classes of Solutions of the Boundary Value Problem in an Infinite Layer for
Systems of Linear Partial Differential Equations with Constant Coefficients,” Mat. Sbornik 79 (2), 293–304
(1969).

10. V. M. Borok, “Correctly Solvable Boundary Value Problems in an Infinite Layer for Systems of Linear Partial
Differential Equations,” Dokl. Akad. Nauk SSSR. Mathematics 35 (1), 185–201 (1971).

11. V. M. Borok and I. I. Antypko, “A Criterion for Unconditional Well-Posedness of the Boundary Value Problem
in a Layer,” Function Theory, Functional Analysis and Their Applications 26, 3–9 (1976).

12. S. L. Sobolev, ”On a New Problem of Mathematical Physics,” Dokl. Akad. Nauk SSSR. Mathematics 18 (1),
3–50 (1954).

13. S. L. Sobolev, ”On Motion of a Symmetric Top with a Cavity Filled with Fluid,” J. Appl. Mech. and Techn.
Physics 3, 20–55 (1960).

14. R. A. Aleksandryan, On the Dependence of Almost Periodicity of Solutions of Differential Equations
on the Shape of the Domain, Candidate’s Dissertation in Physics and Mathematics (Moskov. Gos. Univ.,
Moscow, 1949).

15. R. Denchev, ”On the Spectrum of an Operator,” Dokl. Akad. Nauk SSSR 126 (2), 259–262 (1959).
16. T. I. Zelenyak, Selected Questions of the Qualitative Theory of Partial Differential Equations (Novosi-

birsk. Gos. Univ., Novosibirsk, 1970) [in Russian].
17. T. I. Zelenyak and M. V. Fokin, “On Some Qualitative Properties of Solutions of the Sobolev Equations,”

in Theory of Cubature Formulas and Applications of Functional Analysis to Some Problems of
Mathematical Physics (Nauka, Novosibirsk, 1973), pp. 121–124.

18. M. V. Fokin, “On the Dirichlet Problem for the Vibrating String Equation,” in Well-Posed Initial-
Boundary Value Problems for Non-Classical Equations of Mathematical Physics (Novosibirsk. Gos.
Univ., Novosibirsk, 1981), pp. 178–182.

19. S. A. Aldashev, “The Well-Posedness of the Dirichlet Problem in the Cylindrical Domain for the Multidimen-
sional Wave Equation,” Math. Problems in Engineering, 2010, Article ID 653215 (2010).

20. B. I. Ptashnik, Ill-Posed Boundary Value Problems for Partial Differential Equations (Nauk. Dumka,
Kiev, 1984) [in Russian].

21. V. P. Burskii, Methods for Studying Boundary Value Problems for General Differential Equations
(Nauk. Dumka, Kiev, 2002) [in Russian].

22. S. I. Kabanikhin, M. A. Bektemesov, D. B. Nurseitov, O. I. Krivorotko, and A. N. Alimova, “Optimization
Method in Dirichlet Problem for Wave Equation,” J. Inverse Ill-Posed Probl. 20 (2), 193–211 (2012).

23. C. Zhang, M. G. Knepley, D. A. Yuen, and Y. Shi, Two New Approaches in Solving the Nonlinear Shallow
Water Equations for Tsunamis, Preprint (Elsevier, Argonne, 2007).

24. S. I. Kabanikhin and A. L. Karchevsky, “Method for Solving the Cauchy Problem for an Elliptic Equation,”
J. Inverse Ill-Posed Prob. 3 (1), 21–46 (1995).

25. V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1976) [in Russian].
26. S. I. Kabanikhin, Inverse and Ill-Posed Problems. Theory and Applications (De Gruyter, Berlin, 2012).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 7 No. 2 2013



www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


